Modeling Bond Prices In Continuous-Time Part IV - Solving For Risky Bond Discount Rate

Gary Schurman, MBE, CFA

November, 2020

In this white paper we will build a model that calculates the unknown market discount rate applicable to a risky bond with a known market value.

Our Hypothetical Problem

The table below presents our go-forward model assumptions from Part III...

Table 1: Risky Bond Assumptions

Symbol	Description	Balance
P_{0}	Market price at time zero	$\$ 882.21$
B	Bond face value	$\$ 1,000.00$
C	Annual coupon rate (\%)	4.50
R	Recovery rate given a bond default (\%)	40.00
D	Cumulative default rate (\%)	5.00
S	Credit spread over the risk-free rate (\%)	2.00
T	Term in years (\#)	3.00

We are tasked with answering the following questions:
Question 1: What is the continuous-time discount rate applicable to this risky bond?
Question 2: What is the yield to maturity and bond equivalent yield?

Bond Price Equations From Part III

In Part III we defined the variable P_{0} to be the price at time zero of a coupon paying risky bond and the variable κ to be the continuous-time discount rate. Using Table 1 above the equation for bond price at time zero is... [1]

$$
\begin{equation*}
P_{0}=B\left[(C+\lambda R) \int_{0}^{T} \operatorname{Exp}\{-(\kappa+\lambda) u\} \delta u+\operatorname{Exp}\{-(\kappa+\lambda) T\}\right] \tag{1}
\end{equation*}
$$

The solution to Equation (1) above is... [1]

$$
\begin{equation*}
P_{0}=B\left[(C+\lambda R)(\kappa+\lambda)^{-1}(1-\operatorname{Exp}\{-(\kappa+\lambda) T\})+\operatorname{Exp}\{-(\kappa+\lambda) T\}\right] \tag{2}
\end{equation*}
$$

The equation for the first derivative of bond price with respect to discount rate from Part III is... [1]

$$
\begin{equation*}
\frac{\delta}{\delta \kappa} P_{0}=B\left((C+\lambda R) \frac{\delta}{\delta \kappa}(\kappa+\lambda)^{-1}-(C+\lambda R) \frac{\delta}{\delta \kappa} \operatorname{Exp}\{-(\kappa+\lambda) T\}(\kappa+\lambda)^{-1}+\frac{\delta}{\delta \kappa} \operatorname{Exp}\{-(\kappa+\lambda) T\}\right) \tag{3}
\end{equation*}
$$

The solution to Equation (3) above from Part III is... [1]

$$
\begin{equation*}
\frac{\delta}{\delta \kappa} P_{0}=-B\left[(C+\lambda R)(1-\operatorname{Exp}\{-(\kappa+\lambda) T\}(1+(\kappa+\lambda) T))(\kappa+\lambda)^{-2}+T \operatorname{Exp}\{-(\kappa+\lambda) T\}\right] \tag{4}
\end{equation*}
$$

Solving For The Discount Rate

We will define the variable r to be the actual discount rate (i.e. unknown to be solved for), the variable \hat{r} to be a guess discount rate, the function $f(r)$ to be bond price at the actual discount rate (i.e. the observed bond price), the function $f(\hat{r})$ to be bond price at the guess discount rate, and the function $f^{\prime}(\hat{r})$ to be the first derivative of bond price at the guess discount rate. Using these definitions we can solve for discount rate via the following Newton-Raphson method for solving nonlinear equations... [2]

$$
\begin{equation*}
\hat{r}+\frac{f(r)-f(\hat{r})}{f^{\prime}(\hat{r})}=r+e \tag{5}
\end{equation*}
$$

To solve for the actual discount rate we will come up with an initial guess rate and then iterate Equation (5) above until the error term e is zero (i.e. $r=\hat{r}$).

The Answer To Our Hypothetical Problem

Question 1: What is the continuous-time discount rate applicable to this risk-free bond?
Using Equations (2), (4) and (5) above the answer to our problem is...
Table 2: Newton-Raphson Solution

iteration	guess	f (guess)	f^{\prime} (guess)	f (actual)		new guess
1	0.12000	790.30	-2166.560177	882.21	$=$	0.07758
2	0.07758	888.13	-2451.727344	882.21	$=$	0.07999
3	0.07999	882.23	-2434.511249	882.21	$=$	0.08000
4	0.08000	882.21	-2434.450522	882.21	$=$	0.08000
5	0.08000	882.21	-2434.450521	882.21	$=$	0.08000

The discount rate used by the market to price this bond is 8.00%. We started with a guess rate of 12.00% and the solution took less than five iterations of the Newton-Raphson method to arrive at the actual rate of 8.00%.

Question 2: What is the yield to maturity and bond equivalent yield?
Using the answer to the question above the yield to maturity for this bond is...

$$
\begin{equation*}
\mathrm{YTM}=\operatorname{Exp}\{\kappa\}-1=\operatorname{Exp}\{0.08000\}-1=8.33 \% \tag{6}
\end{equation*}
$$

Using Equation (6) above the bond equivalent yield for this bond is...

$$
\begin{equation*}
\mathrm{BEY}=2 \times\left((1+\mathrm{YTM})^{0.5}-1\right)=2 \times\left((1+0.0833)^{0.5}-1\right)=8.16 \% \tag{7}
\end{equation*}
$$

Note: The bond pays coupon payments semi annually.

References

[1] Gary Schurman, Modeling Bond Price in Continuous-Time - Part III, November, 2020.
[2] Gary Schurman, Newton-Raphson Method for Solving Nonlinear Equations - Part I, October, 2009.

